
149

Chapter 13 Programming Environment Support

The SELF system is designed to be an interactive exploratory programming environment, and so the SELF

implementation must support both rapid turn-around for programming changes and complete source-level debugging.

These features are fairly easy to support in an interpretive environment but are much more difficult to achieve in a high-

performance optimizing compiler environment, particularly one based on aggressive inlining. Other researchers have

investigated the problem of enabling compilation and optimization to coexist gracefully with the programming

environment [Hen82, Zel84, CMR88, ZJ91]. This chapter describes the techniques used in the SELF implementation

to support the programming environment, focusing on the support provided by the compiler.

A compiled method contains more than just instructions. First, it includes a list of the offsets within the instructions of

embedded object references, used by the garbage collector to modify the compiled code if a referenced object is

moved. Second, a compiled method includes descriptions of the inlined methods, which are used to find the values of

local slots of the method and to display source-level call stacks. Third, a compiled method contains a bidirectional

mapping between source-level byte codes and actual program counter values. These two kinds of debugger-related

information are described in section 13.1. Finally, a compiled method includes dependency links to support selective

invalidation of methods after programming changes; these are described in detail in section 13.2.

header

native
machine

code

scavenging info.

scope
descriptions

pc-byte code
mappings

caller scope

slot locations

a compiled method

pc address

scope desc. ptr.

byte code index

a scope description

a byte code mapping

desc. ptr.

Parts of a Compiled Method

dependency
links

150

13.1 Support for Source-Level Debugging

A good programming environment must include a source-level debugger. The SELF debugger presents the program

execution state in terms of the programmer’s execution model: the state of the source code interpreter, with no

optimizations. This requires that the debugger be able to examine the state of the compiled, optimized SELF program

and construct a view of that state (the virtual state) in terms of the byte-coded execution model. Examining the

execution state is complicated by having activation records in the virtual call stack actually be inlined within other

activation records in the physical call stack, and by allocating the slots of virtual methods to registers and/or stack

locations in the compiled methods.

13.1.1 Compiler-Generated Debugging Information

To allow the debugger to reconstruct the virtual call stack from the physical call stack, the SELF compiler appends

debugging information to each compiled method.

• For each scope compiled (the initial method plus any methods or block methods inlined within it), the compiler

outputs information describing that scope’s place in the virtual call tree within the compiled method’s single

physical stack frame.

• For each argument and local slot in the scope, the compiler outputs either the value of the slot (if it is a constant

known at compile-time, as many slots are) or the register or stack location allocated to hold the value of the slot

at run-time.

• For each subexpression within the compiled method, the compiler describes either the compile-time constant

value of the subexpression or the register or stack location allocated for the subexpression. This information is

used to reconstruct the stack of evaluated expressions that are waiting to be consumed by later message sends.

For example, consider a simple method to compute the minimum of two values:

min: arg = (

< arg ifTrue: [self] False: [arg]).

If min: is sent to an integer, the compiler will generate a compiled version of the min: source method customized

for integers. (Customization was the subject of Chapter 8.) The < method for integers will be looked up at compile-

time, locating the following method:

< x = (_IntLT: x IfFail: [...]).

stack compiled methods

return

address

stack

s
ta

c
k
 g

ro
w

s
 d

o
w

n

source methods

return

address

Virtual Source-Level View Physical Machine-Level View

151

This method and the contained call to the intLT primitive will be inlined. The result of the < message will be either

the true object or the false object (in the common case), leading the compiler to split the succeeding

ifTrue:False: message along these two possible outcomes. (Splitting was the subject of Chapter 10.). The

compiler looks up the definition of ifTrue:False: for true:

ifTrue: trueBlk False: falseBlk = (trueBlk value).

and for false:

ifTrue: trueBlk False: falseBlk = (falseBlk value).

These two methods will be inlined, as will the nested value messages within each method. When generating code

for this compiler method, the compiler outputs debugging information to represent this tree of inlined methods:

Each scope description refers to its calling scope description (black arrows in the diagram); a block scope also

references its lexically-enclosing scope description (gray arrows in the diagram). For each slot within a scope, the

debugging information identifies either the slot’s compile-time value or its run-time location. For the min: example,

only the initial arguments have run-time locations (registers r1 and r2 in this case); all other slot contents are known

statically at compile-time. The expression stack debugging information is omitted from this illustration.

This additional debugging information is fairly space-consuming. As described in section B.6 of Appendix B, scope

descriptions take up between 1.5 and 5 times as much space as do the compiled machine instructions, depending on

the degree of inlining performed when compiling the routine. Fortunately, this information can be paged out when the

associated routine is not being debugged. Also, it might be possible to avoid storing the debugging information, instead

regenerating the debugging information upon demand by re-executing the compiler.

13.1.2 Virtual/Physical Program Counter Translation

The SELF compiler also outputs debugging information to support translation between the source-level virtual

program counter within a virtual stack frame (the pair of a scope description and a byte code index within the scope

description) and the machine-level physical program counter within a physical stack frame. This information is used

to translate a hardware physical return address of a stack frame into a byte code index within a virtual stack frame of

the physical frame, such as when displaying the current virtual execution stack. The mapping also is used to locate the

physical program counter corresponding to a particular virtual program counter, such as when setting breakpoints at

particular source positions.

The p.c./byte code mapping is not one-to-one but instead is many-to-many. Several virtual program counter addresses

can map to the same physical program counter address: a sequence of source-level messages can get inlined and

optimized away completely (such as most of the messages sent during the execution of a user-defined control

structure), generating no machine code for any of the eliminated messages, and so each of the messages will end up

mapping to the same physical machine address. Additionally, several physical program counter addresses may map to

the same virtual program counter address: a single source-level message can get split and compiled in more than one

place, thus leading several physical program counter addresses to map to the same source-level message.

Consequently, the compiler treats this mapping as a simple relation and generates a long list of three-word tuples, each

<
self: r1
x: r2

min:
self: r1
arg: r2

value
block: [arg]

ifTrue:

self: true
trueBlk: [self]

falseBlk: [arg]

False:
ifTrue:

self: false
trueBlk: [self]

falseBlk: [arg]

False:

value
block: [self]

152

tuple consisting of a physical program counter address (the physical view) and the pair of a pointer to a virtual scope

description and a byte code index within the scope (the virtual source-level view).

As reported in section B.6 of Appendix B, the p.c./byte code mapping is fairly concise, only requiring space that is

about 25% of that taken up by compiled instructions. One reason for its comparatively small size is that the compiler

only generates tuples that correspond to call sites in the compiled code, since those are the only places that the system

might suspend the method and examine its p.c./byte code mapping.

13.1.3 Current Debugging Primitives

The current SELF implementation includes partial support for interactive debugging. The system supports displaying

the virtual execution call stack, complete with the current values of all local variables of all virtual activation records;

all optimizations including inlining are completely invisible. The system also supports manipulating individual

activation records directly as SELF objects, querying the contents of their local slots, examining their expression stack,

and navigating around the dynamic and static call chains. The current implementation does not yet support modifying

the contents of local variables in activation records, but we do not think that adding this facility would be too difficult.

The system supports breakpoints and single-stepping through process control primitives. The programmer can set a

breakpoint by editing in a call to user-defined SELF code which eventually invokes the process suspend primitive. A

suspended process can be single-stepped by invoking other process control primitives.*

13.1.4 Interactions between Debugging and Optimization

Most optimizing compilers do not support complete source-level debugging because the optimizations they perform

prevent the virtual source-level state from being completely reconstructed. For example, tail call optimizations prevent

the programmer from examining the elided stack frames, and dead variable elimination and dead assignment

elimination prevent the programmer from examining the contents of a variable that is in scope but no longer needed

by the compiled code. The SELF compiler performs no optimization that would prevent the debugger from completely

reconstructing the virtual source-level execution state as if no optimizations had been performed. Even so, the SELF

compiler still can perform many effective optimizations including inlining, splitting, and common subexpression

elimination, since these optimizations can be “undone” at debug-time given the appropriate debugging information.

The SELF compiler’s job of balancing debugging support against various optimizations is eased by only requiring

debugger support at those places in which a debugging primitive might be invoked, such as message sends and

_Restart loop tails.** The compiler is not required to support debugging at arbitrary instruction boundaries (as

would be required if an interrupt could occur at any point in the program) or even at source-level byte code boundaries

(as would be required if the user could single-step through optimized code; single stepping is implemented by

recompiling methods with no optimization and then stopping at every call site). Since the debugger can be invoked

only at well-defined locations in the compiled code, the compiler can perform optimizations between these potential

interruption points that would be difficult or impossible to perform if instruction-level or byte-code-level debugging

information were required. For example, the compiler can reuse the register of a dead variable as long as there are no

subsequent call sites or interruption points in which the variable is still in scope.

Unfortunately, the current representation of debugging information places restrictions on the compiler that can hurt

performance. As mentioned in section 12.1, the current SELF register allocator either can allocate a particular name to

a single location for its entire lifetime or can mark the name as bound to a particular compile-time constant for its entire

lifetime. The restriction that the allocation be constant over the name’s entire lifetime primarily is caused by the limited

abilities of the debugging information to describe the allocation; there is no easy way to have different allocations for

different subranges of the name’s lifetime. The system might be able to get added flexibility within the constraints of

the current representation by making copies of virtual scope descriptions whenever a name had different allocations

for different parts of its lifetime, and using the physical/virtual program counter mapping to select the appropriate

virtual scope description for the physical program counter. This approach would support some form of position-

varying allocation, but could lead to a lot of duplicated debugging information. A better approach would be to redesign

the debugging information representation from scratch to efficiently support names with position-varying allocations.

* Urs Hölzle implemented most of the process control and activation record manipulating primitives, and Bay-Wei Chang
integrated these primitives into the graphical user interface.

** The debugger might run at _Restart points since these points check for interrupts (as described in section 6.3.1), and the user-
defined interrupt handler might call the debugger.

153

13.2 Support for Programming Changes

As described in section 7.1, the SELF compiler assumes that certain hard-to-change parts of objects will remain

constant, and the compiler performs optimizations based on these assumptions. For example, the compiler assumes

that the set of slots of a particular object, such as an integer or the true object, will remain the same, and this allows

the compiler to perform message lookup at compile-time. Similarly, the compiler assumes that the contents of a non-

assignable data slot will never change and that the offset of an assignable data slot will never change. These

assumptions enable the compiler to inline the bodies of methods and replace data slot access methods with load and

store instructions, thereby generating much faster code.

These assumptions will always be correct if the only object mutations available to programs and programmers are

normal assignments to assignable data slots (the compiler explicitly avoids depending on the contents of an assignable

slot). However, additional operations are available in a programming environment to mutate objects in other ways,

such as adding and removing slots or changing the contents of non-assignable data slots. These modifications may

invalidate the assumptions made by the compiler when compiling and optimizing methods. If executed, such out-of-

date compiled code can lead to incorrect behavior or even system crashes.

13.2.1 Ways of Supporting Programming Changes

Traditional batch compiling systems support programming changes by requiring the programmer to recompile

manually those files that are out-of-date, relink the program, and restart the application. At best, some of this process

can be automated by using utilities to determine which files need to be recompiled after a set of programming changes.

Turn-around time for a single programming change can be quite long, at least tens of seconds and more typically

minutes or tens of minutes. Programmer productivity suffers greatly with turn-around times of this length for simple

programming changes.

Interactive systems are designed to support rapid programming turn-around times, on the order of a few seconds or

less. They usually achieve this level of interactive performance by limiting the dependencies among components of a

system, so individual components can be replaced as simply and easily as possible without requiring complex time-

consuming system relinking or recompilation of other components not directly altered by a programming change.

However, execution performance tends to be much lower than in the traditional optimizing environment, since inter-

component information is not used for optimizations. The SELF compiler clearly violates the basic assumptions of this

style of system, since the SELF compiler delights in performing optimizations such as inlining that create many inter-

component dependencies.

SELF’s run-time compilation architecture offers one possible solution to this dilemma. After a programming change

that might have invalidated the assumptions used to compile some method, the system could simply flush all the

compiled code from the compiled code cache. New code will be compiled as needed from the (possibly changed)

source methods, using the new correct assumptions about the relatively unchanging parts of the object structure. Since

compiled code cache flushing is fast, this would seem to solve the programming turn-around time problem.

Unfortunately, this approach simply shifts the cost of the programming change from the flushing operation to

immediately after the flushing. Since after the flush no methods are compiled, nearly every message send will require

new compiled code to be generated, leading to a long sequence of compiler pauses immediately after the flush. While

these compiler pauses will be spread out somewhat over the next chunk of program execution, and SELF’s compiler

architecture will allow code to be generated and “relinked” much faster than a traditional file-based environment, turn-

around time usually will still be much longer than the second or two supported by the unoptimizing interactive system.

To avoid these lengthy recompilation pauses, the SELF system maintains enough inter-component dependency

information to selectively invalidate only those compiled methods that are affected by a programming change. If this

set is small, then the number of pauses to recompile invalidated methods can be kept small and the overall perceived

turn-around time can be kept short. In these situations, selective invalidation enables our SELF system to support both

fast turn-around on programming changes and fast run-time execution between changes.

Selective invalidation is not a cure-all, however. If some extremely common method that is inlined in many places is

changed, such as the definition of + for integers, then the selective invalidation approach reduces to the expensive total

flush approach, producing the same lengthy compilation pauses as the whole system gets recompiled with the new

definition. Fortunately, this has not been a problem in practice, since the common methods used throughout the system

154

are changed very rarely; in other systems such sweeping changes could not be made at all. The current trade-off

between run-time performance and programming turn-around time favors run-time performance over turn-around time

for these kinds of short, commonly-used “system” methods.

13.2.2 Dependency Links

To support selective invalidation, the compiler maintains two-way change dependency links between each compiled

method in the cache and the information that the compiler assumed would remain constant. This information used to

compile code—the set of slots in objects, the offsets of assignable data slots, and the contents of non-assignable slots—

is precisely the information stored in maps. (Maps were described in section 6.1.1 and in Appendix A.) Therefore, the

system only needs to maintain dependency links between maps and compiled methods. Since many compiled methods

may depend on a particular map, and each compiled method may depend on many maps, these dependency links must

support a many-to-many mapping between maps and compiled methods.

Dependency links are created as a result of message lookup to record those aspects of objects traversed during lookup

that if they were modified potentially could change the result of the lookup and consequently the correctness of the

compiled code. Clearly the compiled code depends on the result of the message lookup, and so the system leaves

behind a dependency link between the matching slot found at the end of the lookup and the method being compiled.

If the matching slot is later changed (either by changing the contents of a constant slot such as a method or parent slot

or by changing the offset in the object of the contents of an assignable data slot) or removed altogether, all linked

compiled methods are flushed from the compiled code cache.

The lookup system scans other parts of objects which affect the outcome of the lookup and so need dependencies. The

message lookup system fetches the contents of a parent slot when searching an object’s parents. If the parent slot is

later changed or removed, the outcome of the message send could change. To record this fact, the system creates a

dependency link between the parent slot and the compiled code for the method eventually found as the result of the

lookup. Then if the parent slot is modified or removed, all linked compiled methods will be flushed appropriately.

A more subtle kind of link handles the problem that a slot may be added to an object that affects the outcome of a

message send. The message lookup system frequently searches an object for a matching slot and is unsuccessful; the

object’s parents are searched in turn for a matching slot. If either a matching slot or a parent slot that inherits a matching

slot is later added to the object, then the results of the earlier message would likely be changed, possibly invalidating

some compiled code. To handle this problem, the compiler creates a special add dependency link between compiled

code and the maps of objects unsuccessfully searched for a particular slot; this dependency is not associated with any

slot in the map but instead with the map as a whole. If a slot is ever added to the map, then all compiled methods linked

by the add dependency are flushed, since the added slot might affect their lookup results.

Unlike slot-specific dependency links, add dependency links are imprecise. Since they do not record exactly which

message names were unsuccessfully scanned previously, methods may be flushed that do not need to be flushed. This

could significantly reduce the selectiveness of the flushing, possibly leading to long compile pauses after a

programming change in which slots were added. On the other hand, recording exactly which message names have been

searched unsuccessfully for each map would consume a lot of space, and many maps would have similar long lists of

unsuccessful matches. We are currently exploring alternative mechanisms that would support selective invalidation

even for slot additions.

155

The following diagram illustrates the dependency links that are created when compiling the min: method described

earlier in this chapter. The gray line represents eight separate dependency links, each link connecting a slot in a map

(or the map as a whole in the case of the add dependency links) to the compiled code for min:.

13.2.3 Invalidation

After a programming change, the compiler traverses dependency links to invalidate compiled methods linked to the

updated information. Invalidation is normally quite straightforward, simply requiring the invalid compiled method to

be thrown out of the compiled code cache. However, if a compiled method is currently running (i.e., if there is a stack

frame suspended within the compiled method), then this invalidation becomes complicated. These compiled methods

cannot just be flushed, because they are still executing and will be returned to. Nor can they remain untouched, since

they have been optimized based on information that is no longer correct. The approach taken in the SELF system is to

recompile the out-of-date compiled method and rebuild its stack frame based on the data stored in the old stack frame.*

The SELF system performs this conversion lazily to make this recompilation easier and less intrusive [HCU92]. When

a compiled method suspended on the stack is first invalidated as part of the execution of some programming primitive,

the system marks the method as invalid and removes it from the lookup cache (so that future message sends will not

be bound to the invalid compiled method), but the system does not yet flush the compiled method from the compiled

code cache. Instead the system adjusts the return address of the stack frame that would have returned to the invalid

* The data in the stack frame is still valid. Only the compiled code of the invalidated method is suspect.

root

integer

root map

integer traits map

true
true map

17
integer map

min:

parent

parent

(add dependency)

<

(add dependency)

parent

(add dependency)

ifTrue:False:

(add dependency)

false
false map

parent

ifTrue:False:

(add dependency)

traits

compiled code for integer min:

dependency lists

in case min: is changed

in case < is changed

in case ifTrue:False: is changed

in case min: or a parent is added

in case parent is changed

in case parent is changed

in case <, min:, or a parent is added

in case ifTrue:False: is changed

156

method’s stack frame to instead “return” to a special support routine in the run-time system. The system then returns

control to the programming primitive which will eventually return to the SELF process that invoked it.

Eventually the stack frame below the one for the invalid compiled method will “return,” calling the special run-time

support routine. This routine recompiles the invalid compiled method and builds new stack frames that represent the

same abstract state as did the invalidated compiled method’s stack frame, which because of the lazy recompilation is

now on the bottom of the stack of SELF activation records. To make it easy to fill in the state for the new stack frame

and to keep recompilation pauses short, the new method is compiled without optimization. Since the invalidated

compiled method was probably compiled with optimization, including inlining, the system may need to compile

several unoptimized methods to represent the same abstract state as the invalidated compiled method, one unoptimized

method and physical stack frame for each virtual stack frame inlined into the single physical stack frame of the

invalidated compiled method at the point of call.

To complete the conversion process, the recompiling routine returns into the appropriate point in the new compiled

method for the topmost stack frame. The invalidated compiled method can be flushed from the compiled code cache

if the old invalid stack frame is the last activation of this method.*

Lazy conversion spreads the load of recompilation out across a longer period of time, reducing the perceived pauses

after a programming change. If several programming changes occur before returning to an invalid method, then less

overall work may be performed since the method will not be recompiled after each programming change. Lazy

* Urs Hölzle implemented the mechanisms to lazily recompile invalid methods on the stack.

stack

s
ta

c
k
 g

ro
w

s
 d

o
w

n

compiled methods

return
address

invalid!

recompile()

stack compiled methods

old invalid

unoptimized

stack frame

s
ta

c
k
 g

ro
w

s
 d

o
w

n

157

conversion also simplifies and speeds the conversion process by limiting recompilation and stack frame creation to the

top of the stack. This eliminates the need to copy whole stacks and adjust interior addresses when recompiling and

rebuilding some stack frame buried in the middle of the stack.

13.3 Summary

The SELF compiler is designed to coexist with an interactive exploratory programming environment. This kind of

environment requires complete source-level debugging to be available at all times and “down time” caused by

programming changes to be limited to a few seconds at most. The SELF compiler supports complete source-level

debugging in the face of optimizations such as inlining and splitting by generating additional information that allows

the debugger to view a single physical stack frame as several source-level virtual stack frames. Fast turn-around time

for programming changes is supported by a selective invalidation mechanism based on dependency links that flushes

out-of-date compiled methods from the compiled code cache. This invalidation is performed lazily for compiled

methods currently executing on the stack.

158

